Perichondrium mesenchymal stem cells inhibit the growth of breast cancer cells via the DKK-1/Wnt/β-catenin signaling pathway.
نویسندگان
چکیده
In recent years, mesenchymal stem cells (MSCs), which possess the ability to specifically home to tumor sites, with the potential of multi-directional differentiation and low immunogenicity, have been reported to inhibit the growth of various types of tumors. In the present study, we isolated MSCs from the rib perichondrium (PMSCs). By comparing PMSCs with bone marrow‑derived mesenchymal stem cells (BMSCs), we demonstrated that PMSCs present biological characteristics similar to those of BMSCs. Furthermore, we explored the effect and antitumor mechanism of PMSCs in rat SHZ-88 breast cancer cells. The growth, migration and invasion of the SHZ-88 cells were significantly inhibited, and the Wnt/β-catenin pathway and its target genes were downregulated in the SHZ-88 cells by PMSC-conditioned medium. The expression level of dickkopf-1 (DKK-1) was higher in the PMSCs than that noted in the SHZ-88 cells. Neutralization of DKK-1 in the PMSC‑conditioned medium attenuated the inhibitory effects of PMSCs on SHZ-88 cells. Therefore, PMSC-secreted DKK-1 is involved in the inhibition of SHZ-88 cell growth, migration and invasion, via the Wnt/β‑catenin signaling pathway. In addition, we demonstrated that PMSCs inhibited the growth of breast cancer in vivo and prolonged the survival time of tumor‑bearing rats. PMSCs inhibited the growth of transplanted breast tumors through the Wnt/β-catenin signaling pathway. In conclusion, our data confirmed that MSCs derived from the perichondrium present biological characteristics similar to those of BMSCs and inhibit the growth of breast cancer cells through the Wnt/β-catenin signaling pathway in vitro and in vivo. DKK-1 secreted by PMSCs played a vital role in controlling the Wnt/β-catenin signaling pathway in breast cancer.
منابع مشابه
TGF-β1 enhanced myocardial differentiation through inhibition of the Wnt/β-catenin pathway with rat BMSCs
Objective(s): To investigate and test the hypotheses that TGF-β1 enhanced myocardial differentiation through Wnt/β-catenin pathway with rat bone marrow mesenchymal stem cells (BMSCs).Materials and Methods: Lentiviral vectors carrying the TGF-β1 gene were transduced into rat BMSCs firstly. Then several kinds of experimental methods were u...
متن کاملRe-activation of Wnt/β-catenin Signaling Pathway in Hair Follicle Stem Cells in Treatment of Androgenetic Alopecia
Hair loss is a common hair disorder in human population. It affects quality of life and there are ongoing attempts to find permanent treatment for this condition. But, today there is no completely safe and protective treatment for all. Hair follicle stem cells are alive, but quiescence in androgenetic alopecia and are potentially active and can proliferate and differentiate, then regenerate hai...
متن کاملThe protective effect of propofol on hydrogen peroxide-induced human esophageal carcinoma via blocking the Wnt/β-catenin signaling pathway
Objective(s): To analyze the potential influences of propofol on the oxidative stress of H2O2-induced human esophageal squamous cell carcinoma (ESCC) Eca109 cell through mediating the Wnt/β-catenin signaling pathway.Materials and Methods: Eca109 cells were classified into 5 groups: Control group, H2O2 group, Propofol + H2O2 group, Dkk1 (Dickkopf-1, Wnt/β-catenin pathway antagonist) + H2O2 group...
متن کاملThe Role of Wnt/β-catenin Signaling Pathway in Rat Primordial Germ Cells Reprogramming and Induction into Pluripotent State
Primordial Germ Cells (PGCs) are unipotent precursors of the gametes. PGCs can give rise to a type of pluripotent stem cells in vitro that are called embryonic germ (EG) cells. PGCs can also acquire such pluripotency in vivo and generate teratomas. Under specific culture conditions, PGCs can be reprogrammed to embryonic germ cells which are capable of expression of key pluripotency marker...
متن کاملAngiopoietin-like protein 8 (betatrophin) may inhibit hepatocellular carcinoma through suppressing of the Wnt signaling pathway
Objective(s): Hepatocellular carcinoma (HCC) is one of the leading fatal neoplasms and the most common primary liver malignancy worldwide. Peptide hormone ANGPTL8 (betatrophin) may act as an important regulator in HCC development through the Wnt/β-catenin pathway. We aimed to evaluate the effects of recombinant ANGPTL8 on Wnt/β-catenin signaling in human liver carcinom...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Oncology reports
دوره 36 2 شماره
صفحات -
تاریخ انتشار 2016